1/* Part of SWI-Prolog 2 3 Author: R.A.O'Keefe, Vitor Santos Costa, Jan Wielemaker 4 E-mail: J.Wielemaker@vu.nl 5 WWW: http://www.swi-prolog.org 6 Copyright (c) 1984-2021, VU University Amsterdam 7 CWI, Amsterdam 8 SWI-Prolog Solutions .b.v 9 All rights reserved. 10 11 Redistribution and use in source and binary forms, with or without 12 modification, are permitted provided that the following conditions 13 are met: 14 15 1. Redistributions of source code must retain the above copyright 16 notice, this list of conditions and the following disclaimer. 17 18 2. Redistributions in binary form must reproduce the above copyright 19 notice, this list of conditions and the following disclaimer in 20 the documentation and/or other materials provided with the 21 distribution. 22 23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 33 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 POSSIBILITY OF SUCH DAMAGE. 35*/ 36 37:- module(ugraphs, 38 [ add_edges/3, % +Graph, +Edges, -NewGraph 39 add_vertices/3, % +Graph, +Vertices, -NewGraph 40 complement/2, % +Graph, -NewGraph 41 compose/3, % +LeftGraph, +RightGraph, -NewGraph 42 del_edges/3, % +Graph, +Edges, -NewGraph 43 del_vertices/3, % +Graph, +Vertices, -NewGraph 44 edges/2, % +Graph, -Edges 45 neighbors/3, % +Vertex, +Graph, -Vertices 46 neighbours/3, % +Vertex, +Graph, -Vertices 47 reachable/3, % +Vertex, +Graph, -Vertices 48 top_sort/2, % +Graph, -Sort 49 top_sort/3, % +Graph, -Sort0, -Sort 50 transitive_closure/2, % +Graph, -Closure 51 transpose_ugraph/2, % +Graph, -NewGraph 52 vertices/2, % +Graph, -Vertices 53 vertices_edges_to_ugraph/3, % +Vertices, +Edges, -Graph 54 ugraph_union/3, % +Graph1, +Graph2, -Graph 55 connect_ugraph/3 % +Graph1, -Start, -Graph 56 ]).
79:- autoload(library(lists),[append/3]). 80:- autoload(library(ordsets), 81 [ord_subtract/3,ord_union/3,ord_add_element/3,ord_union/4]).
?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L). L = [1, 2, 3, 4, 5]
90vertices([], []) :- !. 91vertices([Vertex-_|Graph], [Vertex|Vertices]) :- 92 vertices(Graph, Vertices).
?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L). L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]
In this case all vertices are defined implicitly. The next example shows three unconnected vertices:
?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L). L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]]
116vertices_edges_to_ugraph(Vertices, Edges, Graph) :-
117 sort(Edges, EdgeSet),
118 p_to_s_vertices(EdgeSet, IVertexBag),
119 append(Vertices, IVertexBag, VertexBag),
120 sort(VertexBag, VertexSet),
121 p_to_s_group(VertexSet, EdgeSet, Graph).
?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG). NG = [0-[], 1-[3,5], 2-[], 9-[]]
134add_vertices(Graph, Vertices, NewGraph) :- 135 msort(Vertices, V1), 136 add_vertices_to_s_graph(V1, Graph, NewGraph). 137 138add_vertices_to_s_graph(L, [], NL) :- 139 !, 140 add_empty_vertices(L, NL). 141add_vertices_to_s_graph([], L, L) :- !. 142add_vertices_to_s_graph([V1|VL], [V-Edges|G], NGL) :- 143 compare(Res, V1, V), 144 add_vertices_to_s_graph(Res, V1, VL, V, Edges, G, NGL). 145 146add_vertices_to_s_graph(=, _, VL, V, Edges, G, [V-Edges|NGL]) :- 147 add_vertices_to_s_graph(VL, G, NGL). 148add_vertices_to_s_graph(<, V1, VL, V, Edges, G, [V1-[]|NGL]) :- 149 add_vertices_to_s_graph(VL, [V-Edges|G], NGL). 150add_vertices_to_s_graph(>, V1, VL, V, Edges, G, [V-Edges|NGL]) :- 151 add_vertices_to_s_graph([V1|VL], G, NGL). 152 153add_empty_vertices([], []). 154add_empty_vertices([V|G], [V-[]|NG]) :- 155 add_empty_vertices(G, NG).
?- del_vertices([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]], [2,1], NL). NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]
175del_vertices(Graph, Vertices, NewGraph) :- 176 sort(Vertices, V1), % JW: was msort 177 ( V1 = [] 178 -> Graph = NewGraph 179 ; del_vertices(Graph, V1, V1, NewGraph) 180 ). 181 182del_vertices(G, [], V1, NG) :- 183 !, 184 del_remaining_edges_for_vertices(G, V1, NG). 185del_vertices([], _, _, []). 186del_vertices([V-Edges|G], [V0|Vs], V1, NG) :- 187 compare(Res, V, V0), 188 split_on_del_vertices(Res, V,Edges, [V0|Vs], NVs, V1, NG, NGr), 189 del_vertices(G, NVs, V1, NGr). 190 191del_remaining_edges_for_vertices([], _, []). 192del_remaining_edges_for_vertices([V0-Edges|G], V1, [V0-NEdges|NG]) :- 193 ord_subtract(Edges, V1, NEdges), 194 del_remaining_edges_for_vertices(G, V1, NG). 195 196split_on_del_vertices(<, V, Edges, Vs, Vs, V1, [V-NEdges|NG], NG) :- 197 ord_subtract(Edges, V1, NEdges). 198split_on_del_vertices(>, V, Edges, [_|Vs], Vs, V1, [V-NEdges|NG], NG) :- 199 ord_subtract(Edges, V1, NEdges). 200split_on_del_vertices(=, _, _, [_|Vs], Vs, _, NG, NG).
?- add_edges([1-[3,5],2-[4],3-[],4-[5], 5-[],6-[],7-[],8-[]], [1-6,2-3,3-2,5-7,3-2,4-5], NL). NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5], 5-[7], 6-[], 7-[], 8-[]]
216add_edges(Graph, Edges, NewGraph) :-
217 p_to_s_graph(Edges, G1),
218 ugraph_union(Graph, G1, NewGraph).
?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). L = [1-[2], 2-[3,4], 3-[1,2,4]]
229ugraph_union(Set1, [], Set1) :- !. 230ugraph_union([], Set2, Set2) :- !. 231ugraph_union([Head1-E1|Tail1], [Head2-E2|Tail2], Union) :- 232 compare(Order, Head1, Head2), 233 ugraph_union(Order, Head1-E1, Tail1, Head2-E2, Tail2, Union). 234 235ugraph_union(=, Head-E1, Tail1, _-E2, Tail2, [Head-Es|Union]) :- 236 ord_union(E1, E2, Es), 237 ugraph_union(Tail1, Tail2, Union). 238ugraph_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :- 239 ugraph_union(Tail1, [Head2|Tail2], Union). 240ugraph_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :- 241 ugraph_union([Head1|Tail1], Tail2, Union).
?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], [1-6,2-3,3-2,5-7,3-2,4-5,1-3], NL). NL = [1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]
255del_edges(Graph, Edges, NewGraph) :-
256 p_to_s_graph(Edges, G1),
257 graph_subtract(Graph, G1, NewGraph).
263graph_subtract(Set1, [], Set1) :- !. 264graph_subtract([], _, []). 265graph_subtract([Head1-E1|Tail1], [Head2-E2|Tail2], Difference) :- 266 compare(Order, Head1, Head2), 267 graph_subtract(Order, Head1-E1, Tail1, Head2-E2, Tail2, Difference). 268 269graph_subtract(=, H-E1, Tail1, _-E2, Tail2, [H-E|Difference]) :- 270 ord_subtract(E1,E2,E), 271 graph_subtract(Tail1, Tail2, Difference). 272graph_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :- 273 graph_subtract(Tail1, [Head2|Tail2], Difference). 274graph_subtract(>, Head1, Tail1, _, Tail2, Difference) :- 275 graph_subtract([Head1|Tail1], Tail2, Difference).
?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L). L = [1-3, 1-5, 2-4, 4-5]
284edges(Graph, Edges) :- 285 s_to_p_graph(Graph, Edges). 286 287p_to_s_graph(P_Graph, S_Graph) :- 288 sort(P_Graph, EdgeSet), 289 p_to_s_vertices(EdgeSet, VertexBag), 290 sort(VertexBag, VertexSet), 291 p_to_s_group(VertexSet, EdgeSet, S_Graph). 292 293 294p_to_s_vertices([], []). 295p_to_s_vertices([A-Z|Edges], [A,Z|Vertices]) :- 296 p_to_s_vertices(Edges, Vertices). 297 298 299p_to_s_group([], _, []). 300p_to_s_group([Vertex|Vertices], EdgeSet, [Vertex-Neibs|G]) :- 301 p_to_s_group(EdgeSet, Vertex, Neibs, RestEdges), 302 p_to_s_group(Vertices, RestEdges, G). 303 304 305p_to_s_group([V1-X|Edges], V2, [X|Neibs], RestEdges) :- V1 == V2, 306 !, 307 p_to_s_group(Edges, V2, Neibs, RestEdges). 308p_to_s_group(Edges, _, [], Edges). 309 310 311 312s_to_p_graph([], []) :- !. 313s_to_p_graph([Vertex-Neibs|G], P_Graph) :- 314 s_to_p_graph(Neibs, Vertex, P_Graph, Rest_P_Graph), 315 s_to_p_graph(G, Rest_P_Graph). 316 317 318s_to_p_graph([], _, P_Graph, P_Graph) :- !. 319s_to_p_graph([Neib|Neibs], Vertex, [Vertex-Neib|P], Rest_P) :- 320 s_to_p_graph(Neibs, Vertex, P, Rest_P).
?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L). L = [1-[2,3,4,5,6], 2-[4,5,6], 4-[6]]
332transitive_closure(Graph, Closure) :- 333 warshall(Graph, Graph, Closure). 334 335warshall([], Closure, Closure) :- !. 336warshall([V-_|G], E, Closure) :- 337 memberchk(V-Y, E), % Y := E(v) 338 warshall(E, V, Y, NewE), 339 warshall(G, NewE, Closure). 340 341 342warshall([X-Neibs|G], V, Y, [X-NewNeibs|NewG]) :- 343 memberchk(V, Neibs), 344 !, 345 ord_union(Neibs, Y, NewNeibs), 346 warshall(G, V, Y, NewG). 347warshall([X-Neibs|G], V, Y, [X-Neibs|NewG]) :- 348 !, 349 warshall(G, V, Y, NewG). 350warshall([], _, _, []).
?- transpose([1-[3,5],2-[4],3-[],4-[5], 5-[],6-[],7-[],8-[]], NL). NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]
370transpose_ugraph(Graph, NewGraph) :- 371 edges(Graph, Edges), 372 vertices(Graph, Vertices), 373 flip_edges(Edges, TransposedEdges), 374 vertices_edges_to_ugraph(Vertices, TransposedEdges, NewGraph). 375 376flip_edges([], []). 377flip_edges([Key-Val|Pairs], [Val-Key|Flipped]) :- 378 flip_edges(Pairs, Flipped).
?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). L = [1-[4], 2-[1,2,4], 3-[]]
388compose(G1, G2, Composition) :- 389 vertices(G1, V1), 390 vertices(G2, V2), 391 ord_union(V1, V2, V), 392 compose(V, G1, G2, Composition). 393 394compose([], _, _, []) :- !. 395compose([Vertex|Vertices], [Vertex-Neibs|G1], G2, 396 [Vertex-Comp|Composition]) :- 397 !, 398 compose1(Neibs, G2, [], Comp), 399 compose(Vertices, G1, G2, Composition). 400compose([Vertex|Vertices], G1, G2, [Vertex-[]|Composition]) :- 401 compose(Vertices, G1, G2, Composition). 402 403 404compose1([V1|Vs1], [V2-N2|G2], SoFar, Comp) :- 405 compare(Rel, V1, V2), 406 !, 407 compose1(Rel, V1, Vs1, V2, N2, G2, SoFar, Comp). 408compose1(_, _, Comp, Comp). 409 410 411compose1(<, _, Vs1, V2, N2, G2, SoFar, Comp) :- 412 !, 413 compose1(Vs1, [V2-N2|G2], SoFar, Comp). 414compose1(>, V1, Vs1, _, _, G2, SoFar, Comp) :- 415 !, 416 compose1([V1|Vs1], G2, SoFar, Comp). 417compose1(=, V1, Vs1, V1, N2, G2, SoFar, Comp) :- 418 ord_union(N2, SoFar, Next), 419 compose1(Vs1, G2, Next, Comp).
?- top_sort([1-[2], 2-[3], 3-[]], L). L = [1, 2, 3]
The predicate top_sort/3 is a difference list version of top_sort/2.
437top_sort(Graph, Sorted) :- 438 vertices_and_zeros(Graph, Vertices, Counts0), 439 count_edges(Graph, Vertices, Counts0, Counts1), 440 select_zeros(Counts1, Vertices, Zeros), 441 top_sort(Zeros, Sorted, Graph, Vertices, Counts1). 442 443top_sort(Graph, Sorted0, Sorted) :- 444 vertices_and_zeros(Graph, Vertices, Counts0), 445 count_edges(Graph, Vertices, Counts0, Counts1), 446 select_zeros(Counts1, Vertices, Zeros), 447 top_sort(Zeros, Sorted, Sorted0, Graph, Vertices, Counts1). 448 449 450vertices_and_zeros([], [], []) :- !. 451vertices_and_zeros([Vertex-_|Graph], [Vertex|Vertices], [0|Zeros]) :- 452 vertices_and_zeros(Graph, Vertices, Zeros). 453 454 455count_edges([], _, Counts, Counts) :- !. 456count_edges([_-Neibs|Graph], Vertices, Counts0, Counts2) :- 457 incr_list(Neibs, Vertices, Counts0, Counts1), 458 count_edges(Graph, Vertices, Counts1, Counts2). 459 460 461incr_list([], _, Counts, Counts) :- !. 462incr_list([V1|Neibs], [V2|Vertices], [M|Counts0], [N|Counts1]) :- 463 V1 == V2, 464 !, 465 N is M+1, 466 incr_list(Neibs, Vertices, Counts0, Counts1). 467incr_list(Neibs, [_|Vertices], [N|Counts0], [N|Counts1]) :- 468 incr_list(Neibs, Vertices, Counts0, Counts1). 469 470 471select_zeros([], [], []) :- !. 472select_zeros([0|Counts], [Vertex|Vertices], [Vertex|Zeros]) :- 473 !, 474 select_zeros(Counts, Vertices, Zeros). 475select_zeros([_|Counts], [_|Vertices], Zeros) :- 476 select_zeros(Counts, Vertices, Zeros). 477 478 479 480top_sort([], [], Graph, _, Counts) :- 481 !, 482 vertices_and_zeros(Graph, _, Counts). 483top_sort([Zero|Zeros], [Zero|Sorted], Graph, Vertices, Counts1) :- 484 graph_memberchk(Zero-Neibs, Graph), 485 decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros), 486 top_sort(NewZeros, Sorted, Graph, Vertices, Counts2). 487 488top_sort([], Sorted0, Sorted0, Graph, _, Counts) :- 489 !, 490 vertices_and_zeros(Graph, _, Counts). 491top_sort([Zero|Zeros], [Zero|Sorted], Sorted0, Graph, Vertices, Counts1) :- 492 graph_memberchk(Zero-Neibs, Graph), 493 decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros), 494 top_sort(NewZeros, Sorted, Sorted0, Graph, Vertices, Counts2). 495 496graph_memberchk(Element1-Edges, [Element2-Edges2|_]) :- 497 Element1 == Element2, 498 !, 499 Edges = Edges2. 500graph_memberchk(Element, [_|Rest]) :- 501 graph_memberchk(Element, Rest). 502 503 504decr_list([], _, Counts, Counts, Zeros, Zeros) :- !. 505decr_list([V1|Neibs], [V2|Vertices], [1|Counts1], [0|Counts2], Zi, Zo) :- 506 V1 == V2, 507 !, 508 decr_list(Neibs, Vertices, Counts1, Counts2, [V2|Zi], Zo). 509decr_list([V1|Neibs], [V2|Vertices], [N|Counts1], [M|Counts2], Zi, Zo) :- 510 V1 == V2, 511 !, 512 M is N-1, 513 decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo). 514decr_list(Neibs, [_|Vertices], [N|Counts1], [N|Counts2], Zi, Zo) :- 515 decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
?- neighbours(4,[1-[3,5],2-[4],3-[], 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). NL = [1,2,7,5]
530neighbors(Vertex, Graph, Neig) :- 531 neighbours(Vertex, Graph, Neig). 532 533neighbours(V,[V0-Neig|_],Neig) :- 534 V == V0, 535 !. 536neighbours(V,[_|G],Neig) :- 537 neighbours(V,G,Neig).
Can be used to order a not-connected graph as follows:
top_sort_unconnected(Graph, Vertices) :- ( top_sort(Graph, Vertices) -> true ; connect_ugraph(Graph, Start, Connected), top_sort(Connected, Ordered0), Ordered0 = [Start|Vertices] ).
559connect_ugraph([], 0, []) :- !. 560connect_ugraph(Graph, Start, [Start-Vertices|Graph]) :- 561 vertices(Graph, Vertices), 562 Vertices = [First|_], 563 before(First, Start).
572before(X, _) :- 573 var(X), 574 !, 575 instantiation_error(X). 576before(Number, Start) :- 577 number(Number), 578 !, 579 Start is Number - 1. 580before(_, 0).
?- complement([1-[3,5],2-[4],3-[], 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8], 4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8], 7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]
599complement(G, NG) :- 600 vertices(G,Vs), 601 complement(G,Vs,NG). 602 603complement([], _, []). 604complement([V-Ns|G], Vs, [V-INs|NG]) :- 605 ord_add_element(Ns,V,Ns1), 606 ord_subtract(Vs,Ns1,INs), 607 complement(G, Vs, NG).
?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V). V = [1, 3, 5]
617reachable(N, G, Rs) :- 618 reachable([N], G, [N], Rs). 619 620reachable([], _, Rs, Rs). 621reachable([N|Ns], G, Rs0, RsF) :- 622 neighbours(N, G, Nei), 623 ord_union(Rs0, Nei, Rs1, D), 624 append(Ns, D, Nsi), 625 reachable(Nsi, G, Rs1, RsF)
Graph manipulation library
The S-representation of a graph is a list of (vertex-neighbours) pairs, where the pairs are in standard order (as produced by keysort) and the neighbours of each vertex are also in standard order (as produced by sort). This form is convenient for many calculations.
A new UGraph from raw data can be created using vertices_edges_to_ugraph/3.
Adapted to support some of the functionality of the SICStus ugraphs library by Vitor Santos Costa.
Ported from YAP 5.0.1 to SWI-Prolog by Jan Wielemaker.