1/* Part of SWI-Prolog 2 3 Author: Jan Wielemaker and Jon Jagger 4 E-mail: J.Wielemaker@vu.nl 5 WWW: http://www.swi-prolog.org 6 Copyright (c) 2001-2021, University of Amsterdam 7 VU University Amsterdam 8 SWI-Prolog Solutions b.v. 9 All rights reserved. 10 11 Redistribution and use in source and binary forms, with or without 12 modification, are permitted provided that the following conditions 13 are met: 14 15 1. Redistributions of source code must retain the above copyright 16 notice, this list of conditions and the following disclaimer. 17 18 2. Redistributions in binary form must reproduce the above copyright 19 notice, this list of conditions and the following disclaimer in 20 the documentation and/or other materials provided with the 21 distribution. 22 23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 31 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 33 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 POSSIBILITY OF SUCH DAMAGE. 35*/ 36 37:- module(ordsets, 38 [ is_ordset/1, % @Term 39 list_to_ord_set/2, % +List, -OrdSet 40 ord_add_element/3, % +Set, +Element, -NewSet 41 ord_del_element/3, % +Set, +Element, -NewSet 42 ord_selectchk/3, % +Item, ?Set1, ?Set2 43 ord_intersect/2, % +Set1, +Set2 (test non-empty) 44 ord_intersect/3, % +Set1, +Set2, -Intersection 45 ord_intersection/3, % +Set1, +Set2, -Intersection 46 ord_intersection/4, % +Set1, +Set2, -Intersection, -Diff 47 ord_disjoint/2, % +Set1, +Set2 48 ord_subtract/3, % +Set, +Delete, -Remaining 49 ord_union/2, % +SetOfOrdSets, -Set 50 ord_union/3, % +Set1, +Set2, -Union 51 ord_union/4, % +Set1, +Set2, -Union, -New 52 ord_subset/2, % +Sub, +Super (test Sub is in Super) 53 % Non-Quintus extensions 54 ord_empty/1, % ?Set 55 ord_memberchk/2, % +Element, +Set, 56 ord_symdiff/3, % +Set1, +Set2, ?Diff 57 % SICSTus extensions 58 ord_seteq/2, % +Set1, +Set2 59 ord_intersection/2 % +PowerSet, -Intersection 60 ]). 61:- use_module(library(error)). 62 63:- set_prolog_flag(generate_debug_info, false).
102is_ordset(Term) :- 103 is_list(Term), 104 is_ordset2(Term). 105 106is_ordset2([]). 107is_ordset2([H|T]) :- 108 is_ordset3(T, H). 109 110is_ordset3([], _). 111is_ordset3([H2|T], H) :- 112 H2 @> H, 113 is_ordset3(T, H2).
121ord_empty([]).
131ord_seteq(Set1, Set2) :-
132 Set1 == Set2.
140list_to_ord_set(List, Set) :-
141 sort(List, Set).
148ord_intersect([H1|T1], L2) :- 149 ord_intersect_(L2, H1, T1). 150 151ord_intersect_([H2|T2], H1, T1) :- 152 compare(Order, H1, H2), 153 ord_intersect__(Order, H1, T1, H2, T2). 154 155ord_intersect__(<, _H1, T1, H2, T2) :- 156 ord_intersect_(T1, H2, T2). 157ord_intersect__(=, _H1, _T1, _H2, _T2). 158ord_intersect__(>, H1, T1, _H2, T2) :- 159 ord_intersect_(T2, H1, T1).
167ord_disjoint(Set1, Set2) :-
168 \+ ord_intersect(Set1, Set2).
177ord_intersect(Set1, Set2, Intersection) :-
178 ord_intersection(Set1, Set2, Intersection).
188ord_intersection(PowerSet, Intersection) :- 189 must_be(list, PowerSet), 190 key_by_length(PowerSet, Pairs), 191 keysort(Pairs, [_-S|Sorted]), 192 l_int(Sorted, S, Intersection). 193 194key_by_length([], []). 195key_by_length([H|T0], [L-H|T]) :- 196 '$skip_list'(L, H, Tail), 197 ( Tail == [] 198 -> key_by_length(T0, T) 199 ; type_error(list, H) 200 ). 201 202l_int(_, [], I) => 203 I = []. 204l_int([], S, I) => 205 I = S. 206l_int([_-H|T], S0, S) => 207 ord_intersection(S0, H, S1), 208 l_int(T, S1, S).
[]
on entry.216ord_intersection(Set1, Set2, Intersection) :- 217 ( Intersection == [] 218 -> ord_disjoint(Set1, Set2) 219 ; ord_intersection_(Set1, Set2, Intersection) 220 ). 221 222ord_intersection_([], _Int, []). 223ord_intersection_([H1|T1], L2, Int) :- 224 isect2(L2, H1, T1, Int). 225 226isect2([], _H1, _T1, []). 227isect2([H2|T2], H1, T1, Int) :- 228 compare(Order, H1, H2), 229 isect3(Order, H1, T1, H2, T2, Int). 230 231isect3(<, _H1, T1, H2, T2, Int) :- 232 isect2(T1, H2, T2, Int). 233isect3(=, H1, T1, _H2, T2, [H1|Int]) :- 234 ord_intersection_(T1, T2, Int). 235isect3(>, H1, T1, _H2, T2, Int) :- 236 isect2(T2, H1, T1, Int).
ord_subtract(Set2, Set1, Difference)
.
247ord_intersection([], L, [], L) :- !. 248ord_intersection([_|_], [], [], []) :- !. 249ord_intersection([H1|T1], [H2|T2], Intersection, Difference) :- 250 compare(Diff, H1, H2), 251 ord_intersection2(Diff, H1, T1, H2, T2, Intersection, Difference). 252 253ord_intersection2(=, H1, T1, _H2, T2, [H1|T], Difference) :- 254 ord_intersection(T1, T2, T, Difference). 255ord_intersection2(<, _, T1, H2, T2, Intersection, Difference) :- 256 ord_intersection(T1, [H2|T2], Intersection, Difference). 257ord_intersection2(>, H1, T1, H2, T2, Intersection, [H2|HDiff]) :- 258 ord_intersection([H1|T1], T2, Intersection, HDiff).
ord_union(Set1, [Element], Set2)
.266ord_add_element([], El, [El]). 267ord_add_element([H|T], El, Add) :- 268 compare(Order, H, El), 269 addel(Order, H, T, El, Add). 270 271addel(<, H, T, El, [H|Add]) :- 272 ord_add_element(T, El, Add). 273addel(=, H, T, _El, [H|T]). 274addel(>, H, T, El, [El,H|T]).
ord_subtract(Set, [Element], NewSet)
.283ord_del_element([], _El, []). 284ord_del_element([H|T], El, Del) :- 285 compare(Order, H, El), 286 delel(Order, H, T, El, Del). 287 288delel(<, H, T, El, [H|Del]) :- 289 ord_del_element(T, El, Del). 290delel(=, _H, T, _El, T). 291delel(>, H, T, _El, [H|T]).
select(Item, Set1, Set2)
and Set1, Set2 are both sorted lists
without duplicates. This implementation is only expected to work
for Item ground and either Set1 or Set2 ground. The "chk" suffix
is meant to remind you of memberchk/2, which also expects its
first argument to be ground. ord_selectchk(X, S, T)
=>
ord_memberchk(X, S)
& \+ ord_memberchk(X, T)
.
306ord_selectchk(Item, [X|Set1], [X|Set2]) :- 307 X @< Item, 308 !, 309 ord_selectchk(Item, Set1, Set2). 310ord_selectchk(Item, [Item|Set1], Set1) :- 311 ( Set1 == [] 312 -> true 313 ; Set1 = [Y|_] 314 -> Item @< Y 315 ).
Some Prolog implementations also provide ord_member/2, with the same semantics as ord_memberchk/2. We believe that having a semidet ord_member/2 is unacceptably inconsistent with the *_chk convention. Portable code should use ord_memberchk/2 or member/2.
332ord_memberchk(Item, [X1,X2,X3,X4|Xs]) :- 333 !, 334 compare(R4, Item, X4), 335 ( R4 = (>) -> ord_memberchk(Item, Xs) 336 ; R4 = (<) -> 337 compare(R2, Item, X2), 338 ( R2 = (>) -> Item == X3 339 ; R2 = (<) -> Item == X1 340 ;/* R2 = (=), Item == X2 */ true 341 ) 342 ;/* R4 = (=) */ true 343 ). 344ord_memberchk(Item, [X1,X2|Xs]) :- 345 !, 346 compare(R2, Item, X2), 347 ( R2 = (>) -> ord_memberchk(Item, Xs) 348 ; R2 = (<) -> Item == X1 349 ;/* R2 = (=) */ true 350 ). 351ord_memberchk(Item, [X1]) :- 352 Item == X1.
359ord_subset([], _). 360ord_subset([H1|T1], [H2|T2]) :- 361 compare(Order, H1, H2), 362 ord_subset_(Order, H1, T1, T2). 363 364ord_subset_(>, H1, T1, [H2|T2]) :- 365 compare(Order, H1, H2), 366 ord_subset_(Order, H1, T1, T2). 367ord_subset_(=, _, T1, T2) :- 368 ord_subset(T1, T2).
376ord_subtract([], _Not, []). 377ord_subtract([H1|T1], L2, Diff) :- 378 diff21(L2, H1, T1, Diff). 379 380diff21([], H1, T1, [H1|T1]). 381diff21([H2|T2], H1, T1, Diff) :- 382 compare(Order, H1, H2), 383 diff3(Order, H1, T1, H2, T2, Diff). 384 385diff12([], _H2, _T2, []). 386diff12([H1|T1], H2, T2, Diff) :- 387 compare(Order, H1, H2), 388 diff3(Order, H1, T1, H2, T2, Diff). 389 390diff3(<, H1, T1, H2, T2, [H1|Diff]) :- 391 diff12(T1, H2, T2, Diff). 392diff3(=, _H1, T1, _H2, T2, Diff) :- 393 ord_subtract(T1, T2, Diff). 394diff3(>, H1, T1, _H2, T2, Diff) :- 395 diff21(T2, H1, T1, Diff).
406ord_union([], Union) => 407 Union = []. 408ord_union([Set|Sets], Union) => 409 length([Set|Sets], NumberOfSets), 410 ord_union_all(NumberOfSets, [Set|Sets], Union, []). 411 412ord_union_all(N, Sets0, Union, Sets) => 413 ( N =:= 1 414 -> Sets0 = [Union|Sets] 415 ; N =:= 2 416 -> Sets0 = [Set1,Set2|Sets], 417 ord_union(Set1,Set2,Union) 418 ; A is N>>1, 419 Z is N-A, 420 ord_union_all(A, Sets0, X, Sets1), 421 ord_union_all(Z, Sets1, Y, Sets), 422 ord_union(X, Y, Union) 423 ).
430ord_union([], Set2, Union) => 431 Union = Set2. 432ord_union([H1|T1], L2, Union) => 433 union2(L2, H1, T1, Union). 434 435union2([], H1, T1, Union) => 436 Union = [H1|T1]. 437union2([H2|T2], H1, T1, Union) => 438 compare(Order, H1, H2), 439 union3(Order, H1, T1, H2, T2, Union). 440 441union3(<, H1, T1, H2, T2, Union) => 442 Union = [H1|Union0], 443 union2(T1, H2, T2, Union0). 444union3(=, H1, T1, _H2, T2, Union) => 445 Union = [H1|Union0], 446 ord_union(T1, T2, Union0). 447union3(>, H1, T1, H2, T2, Union) => 448 Union = [H2|Union0], 449 union2(T2, H1, T1, Union0).
ord_union(Set1, Set2, Union)
and
ord_subtract(Set2, Set1, New)
.456ord_union([], Set2, Set2, Set2). 457ord_union([H|T], Set2, Union, New) :- 458 ord_union_1(Set2, H, T, Union, New). 459 460ord_union_1([], H, T, [H|T], []). 461ord_union_1([H2|T2], H, T, Union, New) :- 462 compare(Order, H, H2), 463 ord_union(Order, H, T, H2, T2, Union, New). 464 465ord_union(<, H, T, H2, T2, [H|Union], New) :- 466 ord_union_2(T, H2, T2, Union, New). 467ord_union(>, H, T, H2, T2, [H2|Union], [H2|New]) :- 468 ord_union_1(T2, H, T, Union, New). 469ord_union(=, H, T, _, T2, [H|Union], New) :- 470 ord_union(T, T2, Union, New). 471 472ord_union_2([], H2, T2, [H2|T2], [H2|T2]). 473ord_union_2([H|T], H2, T2, Union, New) :- 474 compare(Order, H, H2), 475 ord_union(Order, H, T, H2, T2, Union, New).
ord_union(Set1, Set2, Union), ord_intersection(Set1, Set2, Intersection), ord_subtract(Union, Intersection, Difference).
For example:
?- ord_symdiff([1,2], [2,3], X). X = [1,3].
499ord_symdiff([], Set2, Set2). 500ord_symdiff([H1|T1], Set2, Difference) :- 501 ord_symdiff(Set2, H1, T1, Difference). 502 503ord_symdiff([], H1, T1, [H1|T1]). 504ord_symdiff([H2|T2], H1, T1, Difference) :- 505 compare(Order, H1, H2), 506 ord_symdiff(Order, H1, T1, H2, T2, Difference). 507 508ord_symdiff(<, H1, Set1, H2, T2, [H1|Difference]) :- 509 ord_symdiff(Set1, H2, T2, Difference). 510ord_symdiff(=, _, T1, _, T2, Difference) :- 511 ord_symdiff(T1, T2, Difference). 512ord_symdiff(>, H1, T1, H2, Set2, [H2|Difference]) :- 513 ord_symdiff(Set2, H1, T1, Difference)
Ordered set manipulation
Ordered sets are lists with unique elements sorted to the standard order of terms (see sort/2). Exploiting ordering, many of the set operations can be expressed in order N rather than N^2 when dealing with unordered sets that may contain duplicates. The library(ordsets) is available in a number of Prolog implementations. Our predicates are designed to be compatible with common practice in the Prolog community. The implementation is incomplete and relies partly on library(oset), an older ordered set library distributed with SWI-Prolog. New applications are advised to use library(ordsets).
Some of these predicates match directly to corresponding list operations. It is advised to use the versions from this library to make clear you are operating on ordered sets. An exception is member/2. See ord_memberchk/2.
The ordsets library is based on the standard order of terms. This implies it can handle all Prolog terms, including variables. Note however, that the ordering is not stable if a term inside the set is further instantiated. Also note that variable ordering changes if variables in the set are unified with each other or a variable in the set is unified with a variable that is `older' than the newest variable in the set. In practice, this implies that it is allowed to use
member(X, OrdSet)
on an ordered set that holds variables only if X is a fresh variable. In other cases one should cease using it as an ordset because the order it relies on may have been changed. */